167 research outputs found

    68Ga-labelled exendin-3, a new agent for the detection of insulinomas with PET

    Get PDF
    Contains fulltext : 89596.pdf (publisher's version ) (Closed access)PURPOSE: Insulinomas are neuroendocrine tumours derived from pancreatic beta-cells. The glucagon-like peptide 1 receptor (GLP-1R) is expressed with a high incidence (>90%) and high density in insulinomas. Glucagon-like peptide 1 (GLP-1), the natural ligand of GLP-1R, is rapidly degraded in vivo. A more stable agonist of GLP-1R is exendin-3. We investigated imaging of insulinomas with DOTA-conjugated exendin-3 labelled with (68)Ga. METHODS: Targeting of insulinomas with [Lys(40)(DOTA)]exendin-3 labelled with either (111)In or (68)Ga was investigated in vitro using insulinoma tumour cells (INS-1). [Lys(40)((111)In-DTPA)]Exendin-3 was used as a reference in this study. In vivo targeting was investigated in BALB/c nude mice with subcutaneous INS-1 tumours. PET imaging was performed using a preclinical PET/CT scanner. RESULTS: In vitro exendin-3 specifically bound and was internalized by GLP-1R-positive cells. In BALB/c nude mice with subcutaneous INS-1 tumours a high uptake of [Lys(40)((111)In-DTPA)]exendin-3 in the tumour was observed (33.5 +/- 11.6%ID/g at 4 h after injection). Uptake was specific, as determined by coinjection of an excess of unlabelled [Lys(40)]exendin-3 (1.8 +/- 0.1%ID/g). The pancreas also exhibited high and specific uptake (11.3 +/- 1.0%ID/g). High uptake was also found in the kidneys (144 +/- 24%ID/g) and this uptake was not receptor-mediated. In this murine tumour model optimal targeting of the GLP-1R expressing tumour was obtained at exendin doses < or =0.1 microg. Remarkably, tumour uptake of (68)Ga-labelled [Lys(40)(DOTA)]exendin-3 was lower (8.9 +/- 3.1%ID/g) than tumour uptake of (111)In-labelled [Lys(40)(DTPA)]exendin-3 (25.4 +/- 7.2%ID/g). The subcutaneous tumours were clearly visualized by small-animal PET imaging after injection of 3 MBq of [Lys(40)((68)Ga-DOTA)]exendin-3. CONCLUSION: [Lys(40)((68)Ga-DOTA)]Exendin-3 specifically accumulates in insulinomas, although the uptake is lower than that of [Lys(40)((111)In-DTPA)]exendin-3. Therefore, [Lys(40)((68)Ga-DOTA)]exendin-3 is a promising tracer to visualize insulinomas with PET.01 juli 201

    Methodological considerations in quantification of oncological FDG PET studies

    Get PDF
    Contains fulltext : 87741.pdf (publisher's version ) (Closed access) Contains fulltext : 87741-1.pdf (postprint version ) (Open Access)PURPOSE: This review aims to provide insight into the factors that influence quantification of glucose metabolism by FDG PET images in oncology as well as their influence on repeated measures studies (i.e. treatment response assessment), offering improved understanding both for clinical practice and research. METHODS: Structural PubMed searches have been performed for the many factors affecting quantification of glucose metabolism by FDG PET. Review articles and references lists have been used to supplement the search findings. RESULTS: Biological factors such as fasting blood glucose level, FDG uptake period, FDG distribution and clearance, patient motion (breathing) and patient discomfort (stress) all influence quantification. Acquisition parameters should be adjusted to maximize the signal to noise ratio without exposing the patient to a higher than strictly necessary radiation dose. This is especially challenging in pharmacokinetic analysis, where the temporal resolution is of significant importance. The literature is reviewed on the influence of attenuation correction on parameters for glucose metabolism, the effect of motion, metal artefacts and contrast agents on quantification of CT attenuation-corrected images. Reconstruction settings (analytical versus iterative reconstruction, post-reconstruction filtering and image matrix size) all potentially influence quantification due to artefacts, noise levels and lesion size dependency. Many region of interest definitions are available, but increased complexity does not necessarily result in improved performance. Different methods for the quantification of the tissue of interest can introduce systematic and random inaccuracy. CONCLUSIONS: This review provides an up-to-date overview of the many factors that influence quantification of glucose metabolism by FDG PET.01 juli 201

    F-18-fluorodeoxyglucose positron emission tomography combined with CT in critically ill patients with suspected infection

    Get PDF
    Contains fulltext : 88623.pdf (publisher's version ) (Closed access)PURPOSE: To assess the value of F-18-fluorodeoxyglucose positron emission tomography (FDG-PET) combined with CT in critically ill patients suspected of having an infection. METHODS: FDG-PET CT scans requested for evaluation of a suspected infection or inflammatory process in critically ill, mechanically ventilated patients were analyzed (blinded for the final clinical diagnosis) and compared with clinical follow-up. RESULTS: Thirty-five FDG-PET/CT scans performed in 33 ICU patients (28 adults and 5 children), median age 58 years (range 1 month-72 years), were analyzed. Twenty-one FDG-PET/CT scans were true positive. Three FDG-PET/CT scans were considered false positive, in one case leading to additional diagnostic procedures (specificity 79%). Additionally, 11 true negatives were found (sensitivity 100%), leading to an overall accuracy of 91%. CONCLUSIONS: FDG-PET/CT scanning is of additional value in the evaluation of suspected infection in critically ill patients in whom conventional diagnostics did not lead to a diagnosis. Apart from the high accuracy, in this study it appeared that, in addition to conventional diagnostic techniques that were routinely performed, a normal FDG-PET/CT ruled out important infections requiring prolonged antibiotic therapy or drainage. Since sensitivity is lower in highly metabolic active tissues (e.g., endocarditis, meningitis), the FDG-PET/CT scan is not suited to detect infections in these tissues.01 maart 201

    Optimized labeling of NOTA-conjugated octreotide with F-18

    Get PDF
    We recently reported a facile method based on the chelation of [18F]aluminum fluoride (Al18F) by NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid). Here, we present a further optimization of the 18F labeling of NOTA-octreotide (IMP466). Octreotide was conjugated with the NOTA chelate and was labeled with 18F in a two-step, one-pot method. The labeling procedure was optimized with regard to the labeling buffer, ionic strength, peptide concentration, and temperature. Radiochemical yield, specific activity, in vitro stability, and receptor affinity were determined. Biodistribution of 18F-IMP466 was studied in AR42J tumor-bearing mice. In addition, microPET/CT images were acquired. IMP466 was labeled with Al18F in a single step with 97% yield in the presence of 80% (v/v) acetonitrile or ethanol. The labeled product was purified by HPLC to remove unlabeled peptide and unbound Al18F. The radiolabeling, including purification, was performed for 45 min. Specific activities of 48,000 GBq/mmol could be obtained. 18F-IMP466 showed a high tumor uptake and excellent tumor-to-blood ratios at 2 h post-injection. In addition, the low bone uptake indicated that the Al18F–NOTA complex was stable in vivo. PET/CT scans revealed excellent tumor delineation and specific accumulation in the tumor. Uptake in receptor-negative organs was low. NOTA-octreotide could be labeled with 18F in quantitative yields using a rapid two-step, one-pot, method. The compound was stable in vivo and showed rapid accretion in SSTR2-receptor-expressing AR42J tumors in nude mice. This method can be used to label other NOTA-conjugated compounds such as RGD peptides, GRPR-binding peptides, and Affibody molecules with 18F

    [89Zr]-immuno-PET prediction of response to rituximab treatment in patients with therapy refractory interstitial pneumonitis: a phase 2 trial

    Get PDF
    Introduction: Immune-mediated interstitial pneumonitis may be treated with anti-CD20 therapy after failure of conventional therapies. However, clinical response is variable. It was hypothesized that autoreactive CD20-positive cells may play an important role in this variability. This prospective study aims to elucidate if imaging of CD20-positive cells in the lungs allows prediction of the response to anti-CD20 treatment. Methods: Twenty-one patients with immune-mediated interstitial lung disease (ILD) with deteriorated pulmonary function received a dose of 1000 mg rituximab on day 1 and day 14 spiked with a tracer dose of radiolabeled [89Zr]-rituximab. PET/CT was performed on days 3 and 6. Standardized uptake values (SUV) were calculated as a measure for pulmonary CD20 expression. Based on pulmonary function tests (PFT), forced vital capacity (FVC), and diffusing capacity for carbon monoxide (DLCO), prior to and 6 months after treatment, patients were classified as responder (stable disease or improvement) or non-responder. Results: Fifteen patients (71%) were classified as responder. Pulmonary [89Zr]-rituximab PET SUVmean was significantly correlated with the change in FVC and DLCO (K = 0.49 and 0.56, respectively) when using target-to-background ratios, but not when using SUVmean alone. [89Zr]-rituximab SUVmean was significantly higher in responders than in non-responders (0.35 SD 0.09 vs. 0.23 SD 0.06; P = 0.02). Conclusion: Rituximab treatment was effective in the majority of patients. As a higher pulmonary uptake of [89Zr]-rituximab correlated with improvement of PFT and treatment outcome, [89Zr]-rituximab PET imaging may serve as a potential predictive biomarker for anti-CD20 therapy. Trial registration: Clinicaltrials.go

    The role of 18F-FDG PET in the differentiation between lung metastases and synchronous second primary lung tumours

    Get PDF
    Contains fulltext : 87717.pdf (publisher's version ) (Closed access)PURPOSE: In lung cancer patients with multiple lesions, the differentiation between metastases and second primary tumours has significant therapeutic and prognostic implications. The aim of this retrospective study was to investigate the potential of (18)F-FDG PET to discriminate metastatic disease from second primary lung tumours. METHODS: Of 1,396 patients evaluated by the thoracic oncology group between January 2004 and April 2009 at the Radboud University Nijmegen Medical Centre, patients with a synchronous second primary lung cancer were selected. Patients with metastatic disease involving the lungs served as the control group. Maximum standardized uptake values (SUVs) measured with (18)F-FDG PET were determined for two tumours in each patient. The relative difference between the SUVs of these tumours (SUV) was determined and compared between the second primary group and metastatic disease group. Receiver-operating characteristic (ROC) curve analysis was performed to determine the sensitivity and specificity of the SUV for an optimal cut-off value. RESULTS: A total of 37 patients (21 metastatic disease, 16 second primary cancer) were included for analysis. The SUV was significantly higher in patients with second primary cancer than in those with metastatic disease (58 vs 28%, respectively, p < 0.001). The area under the ROC curve was 0.81 and the odds ratio for the optimal cut-off was 18.4. CONCLUSION: SUVs from (18)F-FDG PET images can be helpful in differentiating metastatic disease from second primary tumours in patients with synchronous pulmonary lesions. Further studies are warranted to confirm the consistency of these results.1 november 201

    Toward Improved Outcomes for Patients With Lung Cancer Globally: The Essential Role of Radiology and Nuclear Medicine

    Full text link
    PURPOSE Key to achieving better population-based outcomes for patients with lung cancer is the improvement of medical imaging and nuclear medicine infrastructure globally. This paper aims to outline why and spark relevant health systems strengthening. METHODS The paper synthesizes the global lung cancer landscape, imaging referral guidelines (including resource-stratified ones), the reliance of TNM staging upon imaging, relevant multinational health technology assessments, and precisely how treatment selection and in turn patient outcomes hinge upon imaging findings. The final discussion presents data on current global gaps in both diagnostics (including imaging) and therapies and how, informed by such data, improved population-based outcomes are tangible through strategic planning. RESULTS Imaging findings are central to appropriate lung cancer patient management and can variably lead to life-prolonging interventions and/or to life-enhancing palliative measures. Early-stage lung cancer can be treated with curative intent but, unfortunately, most patients with lung cancer still present at advanced stages and many patients lack access to both diagnostics and therapies. Furthermore, half of lung cancer cases occur in low- and middle-income countries. The role of medical imaging and nuclear medicine in lung cancer management, as outlined herein, may help inform strategic planning. CONCLUSION Lung cancer is the number one cancer killer worldwide. The essential role that medical imaging and nuclear medicine play in early diagnosis and disease staging cannot be overstated, pivotal in selecting the many patients for whom measurably improved outcomes are attainable. Prevention synergized with patient-centered, compassionate, high-quality lung cancer management provision mandate that strategic population-based planning, including universal health coverage strategies, should extend well beyond the scope of disease prevention to include both curative and noncurative treatment options for the millions afflicted with lung cancer

    Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting peptides

    Get PDF
    Contains fulltext : 97745.pdf (publisher's version ) (Closed access)PURPOSE: Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several CCK-2 receptor-binding radiopeptides have been developed and some have been tested in patients. Here we aimed to compare the in vivo tumour targeting properties of 12 (111)In-labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated gastrin/CCK2 receptor-binding peptides. METHODS: Two CCK8-based peptides and ten gastrin-based peptide analogues were tested. All peptides were conjugated with DOTA and labelled with (111)In. Biodistribution studies were performed in mice with subcutaneous CCK2/gastrin receptor-expressing tumours and with receptor-negative tumours contralaterally. Biodistribution was studied by counting dissected tissues at 1 and 4 h after injection. RESULTS: Both the CCK analogues displayed relatively low tumour uptake (approximately 2.5%ID/g) as compared to minigastrin analogues. Two linear minigastrin peptides (MG0 and sargastrin) displayed moderate tumour uptake at both 1 and 4 h after injection, but also very high kidney uptake (both higher than 48%ID/g). The linear MG11, lacking the penta-Glu sequence, showed lower tumour uptake and also low kidney uptake. Varying the N-terminal Glu residues in the minigastrin analogues led to improved tumour targeting properties, with PP-F11 displaying the optimal biodistribution. Besides the monomeric linear peptides, a cyclized peptide and a divalent peptide were tested. CONCLUSION: Based on these studies, optimal peptides for peptide receptor radionuclide targeting of CCK2/gastrin receptor-expressing tumours were the linear minigastrin analogue with six D-Glu residues (PP-F11), the divalent analogue MGD5 and the cyclic peptide cyclo-MG1. These peptides combined high tumour uptake with low kidney retention, and may therefore be good candidates for future clinical studies

    [F-18]FDG-PET/CT to prevent futile surgery in indeterminate thyroid nodules:a blinded, randomised controlled multicentre trial

    Get PDF
    Purpose To assess the impact of an [F-18]FDG-PET/CT-driven diagnostic workup to rule out malignancy, avoid futile diagnostic surgeries, and improve patient outcomes in thyroid nodules with indeterminate cytology. Methods In this double-blinded, randomised controlled multicentre trial, 132 adult euthyroid patients with scheduled diagnostic surgery for a Bethesda III or IV thyroid nodule underwent [F-18]FDG-PET/CT and were randomised to an [F-18] FDG-PET/CT-driven or diagnostic surgery group. In the [F-18]FDG-PET/CT-driven group, management was based on the [F-18]FDG-PET/CT result: when the index nodule was visually [F-18]FDG-positive, diagnostic surgery was advised; when [F-18]FDG-negative, active surveillance was recommended. The nodule was presumed benign when it remained unchanged on ultrasound surveillance. In the diagnostic surgery group, all patients were advised to proceed to the scheduled surgery, according to current guidelines. The primary outcome was the fraction of unbeneficial patient management in one year, i.e., diagnostic surgery for benign nodules and active surveillance for malignant/borderline nodules. Intention-to-treat analysis was performed. Subgroup analyses were performed for non-Hurthle cell and Hurthle cell nodules. Results Patient management was unbeneficial in 42% (38/91 [95% confidence interval [CI], 32-53%]) of patients in the [F-18] FDG-PET/CT-driven group, as compared to 83% (34/41 [95% CI, 68-93%]) in the diagnostic surgery group (p < 0.001). [F-18]FDG-PET/CT-driven management avoided 40% (25/63 [95% CI, 28-53%]) diagnostic surgeries for benign nodules: 48% (23/48 [95% CI, 33-63%]) in non-Hurthle cell and 13% (2/15 [95% CI, 2-40%]) in I-Liable cell nodules (p = 0.02). No malignant or borderline tumours were observed in patients under surveillance. Sensitivity, specificity, negative and positive predictive value, and benign call rate (95% CI) of [F-18]FDG-PET/CT were 94.1% (80.3-99.3%), 39.8% (30.0-50.2%), 95.1% (83.5-99.4%), 35.2% (25.4-45.9%), and 31.1% (23.3-39.7%), respectively. Conclusion An [F-18]FDG-PET/CT-driven diagnostic workup of indeterminate thyroid nodules leads to practice changing management, accurately and oncologically safely reducing futile surgeries by 40%. For optimal therapeutic yield, application should be limited to non-Hurthle cell nodules

    Role of radiography, MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma

    Get PDF
    Multiple myeloma is a malignant B-cell neoplasm that involves the skeleton in approximately 80% of the patients. With an average age of 60 years and a 5-years survival of nearly 45% Brenner et al. (Blood 111:2516–2520, 35) the onset is to be classified as occurring still early in life while the disease can be very aggressive and debilitating. In the last decades, several new imaging techniques were introduced. The aim of this review is to compare the different techniques such as radiographic survey, multidetector computed tomography (MDCT), whole-body magnetic resonance imaging (WB-MRI), fluorodeoxyglucose positron emission tomography- (FDG-PET) with or without computed tomography (CT), and 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) scintigraphy. We conclude that both FDG-PET in combination with low-dose CT and whole-body MRI are more sensitive than skeleton X-ray in screening and diagnosing multiple myeloma. WB-MRI allows assessment of bone marrow involvement but cannot detect bone destruction, which might result in overstaging. Moreover, WB-MRI is less suitable in assessing response to therapy than FDG-PET. The combination of PET with low-dose CT can replace the golden standard, conventional skeletal survey. In the clinical practise, this will result in upstaging, due to the higher sensitivity
    corecore